‘To heat a planetary surface’ for dummies; Part 4

I rounded off Part 3 of this series by suggesting the following:

Next up: How do you heat a planetary surface, then? If not by the Earth’s own thermal radiation, a result of its temperature rather than a cause of it … How does the atmosphere insulate the surface?”

Not so. This will have to wait a bit still. Next post, perhaps. I will rather try to clarify my stance on the whole ‘bidirectional flow’ concept thing, seeing how this topic has a tendency of stirring up both emotions and misconceptions.



There is quite a bit of confusion surrounding the whole issue of electromagnetic radiation, the Stefan-Boltzmann Law and the thermodynamic concept of ‘energy transfer’.

I will try to explain why there can be no such thing as a bidirectional energy transfer between two objects radiating at each other. Yes, they are radiating at each other! Radiation goes in all directions. Continue reading

‘To heat a planetary surface’ for dummies; Part 3

We’re still discussing Willis Eschenbach’s ‘Steel Greenhouse’.

How come the warming EFFECT of putting the shell around the sphere is real but Eschenbach’s “back radiation” EXPLANATION of how it comes about is wrong?

Simply put, it’s because the effect doesn’t violate the 2nd Law of Thermodynamics, but the explanation does.

In Part 1 and Part 2 we established some fairly basic principles of thermodynamics that we can now put to use in analysing Eschenbach’s explanation of why and how the radiating central sphere needs to warm with the steel shell surrounding it:

“In order to maintain its thermal equilibrium, the whole system must still [after the steel shell is placed around the sphere] radiate 235 W/m2 out to space. To do this, the steel shell must warm until it is radiating at 235 watts per square metre. Of course, since a shell has an inside and an outside, it will also radiate 235 watts inward to the planet. The planet is now being heated by 235 W/m2 of energy from the interior, and 235 W/m2 from the shell. This will warm the planetary surface until it reaches a temperature of 470 watts per square metre. In vacuum conditions as described, this would be a perfect greenhouse, with no losses of any kind.”

The first part of this paragraph simply describes the necessary conditions for reaching a new dynamic equilibrium upon putting the steel shell up around the radiating sphere. Nothing mysterious about it at all.

But then (in the bolded part) Eschenbach starts ‘explaining’ how he sees this new state of dynamic equilibrium to be accomplished.

And this is where any connection to basic, ordinary physics – and hence, to the real world – appears to be lost.

Let’s parse what he’s saying: Continue reading

Postma’s confusion

This could hopefully be a nice learning experience as part of our ongoing discussion on ‘how to heat a planetary surface’.

I went over to Joseph Postma’s site to see how they treat the whole sphere/shell problem there, having learned that some commenter had linked to my last post on the subject on one of his threads, evidently leading to the appearance soon after of a couple of climateofsophistry.com regulars on this blog.

What I found quite frankly appalled me.

It is just as much a cultic echo chamber as any warmist site I’ve ever visited. They live firmly and tightly packed inside their little pink bubble, completely detached from reality, but keep patting each other on the back, congratulating themselves whenever more elaborate ways are found to consolidate and entrench the cult’s profoundly absurd ideas about the world, loudly and indiscriminately thrashing everyone not agreeing with them, calling them idiots, criminals and the like. Anyone who dares question the dogma is immediately and summarily labelled a ‘sophist’. The cult leader, Postma himself, is of course first in line, the worst of the lot, a person with clear megalomaniacal tendencies, whose modus operandi when it comes to meeting a challenge consistently revolves around twisting the opponent’s every word, nitpicking on irrelevant semantic details to evade major points being made, constantly ‘misunderstanding’ opposing arguments, thus creating the opportunity to divert and build straw men to tear down, all of it sprinkled with a nice dose of mockery and verbal abuse.

In short, the perfect sophist, surely a dedicated student of the Alinsky method.

Following are a couple of exchanges from Postma’s blog exemplifying precisely what I mean, highlighting the blinkered, confused nature of Postma’s world view, plus his aggressive rhetorical tactics employed whenever he needs to escape rational – but obviously uncomfortable – counter-arguments threatening to trap and expose him, keeping his flock’s cognitive dissonance safely at bay: Continue reading

‘To heat a planetary surface’ for dummies; Part 2

For something – anything – to acquire a temperature above absolute zero (0 K), it somehow needs to be able to warm. The only real requirement for something to be able to warm is for it to possess a ‘thermal mass’, or simply ‘mass’. A thermal mass provides the thing in question with what is (a bit awkwardly) called a ‘heat capacity’, meaning a capacity to absorb and store energy from some energy source (external or internal).

We already know, from basic thermodynamic principles, how energy can be transferred to (or from) an object. It can be transferred in the form of ‘heat’ [Q] or in the form of ‘work’ [W]. Whenever energy is transferred to an object, the ‘internal energy’ [U] of that object increases as a result, which simply means that the object in question has absorbed (energy isn’t ‘transferred’ to a system until it’s actually become ‘absorbed’ by it) the energy to store it inside its mass, as microscopic kinetic and potential energy of its atoms and molecules.

We already know, from the first post in this series, how system ‘internal energy’ [U] relates to system ‘temperature’ [T]. We know that a system with a high ‘heat capacity’ will warm more slowly than a system with a low ‘heat capacity’, both systems absorbing equal energy inputs, the high-heat-capacity system simply storing a larger portion of the absorbed energy as internal/molecular PE rather than as internal/molecular KE (determining the temperature). Both systems, however, will warm, only at different rates. U and T invariably move in the same direction. Unless there is an ongoing phase transition. Then U will increase and T will not. There is no process, though, where U increases and T decreases. The two correspond.

OK. We know that to make an object warm, we must make it accumulate ‘internal energy’. If it doesn’t, it cannot warm. Continue reading

‘To heat a planetary surface’ for dummies; Part 1

Happy New Year to everyone! Hope you all had a pleasant celebration.

I will unabashedly start off in 2015 with … another attempt at exposing the chasm that lies between what real physics tells us about the processes of nature (plus what we actually observe in the real world) on the one hand, and what the ‘physics’-like concoctions of the radiative GHE/AGW-establishment proclaim on the other.



The general public understanding (or should we rather call it ‘perception’?) of how the presence of an atmosphere would make the solar-heated planetary surface underneath warmer than if the atmosphere weren’t there, is so riddled with misconceptions and flawed ideas about how the world works, on such a fundamental level, that something needs to be done.

People simply need to understand that the official (and, I’m afraid, ‘authoritative’) rGHE/AGW ‘explanation’ is based altogether on self-invented nonsense physics.

The best way to let people realise this is to explain how things really work and to have this juxtaposed with the standard rGHE postulates advertised by ‘Climate ScienceTM’. Continue reading

I don’t get ‘the gravito-thermal effect’

Lately there’s been a bit of back-and-forth discussion going on on the so-called ‘Gravito-Thermal Effect’ (GTE) at a few notable climate blogs, like The Hockey Schtick, Tallbloke’s Talkshop, Clive Best and even Judith Curry’s Climate Etc. (in fact, this is where the lengthiest discussion thread on the subject is to be found).

To me the whole thing appears to arise from a fundamental misunderstanding of the adiabatic process (see the end of the post).

Something called the ‘Loschmidt Effect’, after a proposal in the 1870s by the Austrian scientist Josef Loschmidt, seems to lie at the heart of the GTE argument. Tallbloke brought it out from relative obscurity in a post in early 2012. A quote from a textbook describes the proposed effect as follows: Continue reading

The greenhouse effect that wasn’t (Part 2)

A SIMPLE, STRAIGHTFORWARD CASE STUDY:

DOES

“THE ATMOSPHERIC RADIATIVE GREENHOUSE EFFECT”

DO WHAT IT’S SUPPOSED TO DO?

First, what is the rGHE supposed to do?

It is supposed to make the surface below a radiatively active atmosphere warmer than if this particular kind of atmosphere weren’t there. By extension, one could claim – and this is after all what the ‘Anthropogenic Global Warming hypothesis’ is all about – that the stronger the rGHE, the stronger its warming effect.

Now, as far as I’m concerned, this is a prediction that should be possible to test. Or else, what good is it?

Again, what is the strictest definition of the rGHE? What is its ‘surface warming mechanism’ supposed to be, in the simplest of terms? We went through this in Part 1, where what was defined as the “greenhouse effect” of clouds was overwhelmed by their opposing “albedo effect”, leading to an overall – net – cooling effect.

It is found simply and solely in the reduction in outgoing radiative (LWIR) flux from the surface to the top of the atmosphere (ToA) – the surface flux minus the ToA flux. (The surface flux is calculated directly from the surface temperature (based on a blackbody assumption, through the Stefan-Boltzmann equation), while the ToA flux is rather estimated from actual measurements made by satellite-borne instruments.)

The prediction, then, would go as follows: Continue reading