The “Climate Sensitivity” folly

The Lewis & Curry paper of 2014, where they set out to estimate Earth’s climate sensitivity to “GHGs” apparently ‘based on observations’, neatly identifies the fundamental problem with the whole “climate sensitivity” issue:

It is not a scientific proposition. It starts out as a speculation, a mere conjecture, and ends with a circular argument based on that very conjecture.

The conjecture of course being:

“More CO2 in the atmosphere can, will and does cause a net warming of the global surface of the Earth.”

This is the basic premise behind the entire AGW industry. The one thing that HAS TO be correct in order for all the other claims made to even stand a chance of being taken seriously in a proper scientific context.

But has this basic premise ever, anywhere, by anyone, been verified empirically through consistent observations from the real Earth system?

Of course not! Not even remotely so!

It is still nothing but a loose conjecture …

And yet NO ONE seems to acknowledge even in the slightest how this might pose a problem. All you get if you bring it up are shrugs of indifference and/or tuts of disapproval. ‘Go away, we’re discussing real, important issues here!’

The irony … Continue reading

HadCRUt3 vs. ERA Interim

Climate (or global atmospheric) reanalyses are an alternative way to assess how the global climate evolves over time, a blend of model and observation. They tend to include a multitude of variables, but I would like to focus on the one specifically pertaining to our recent discussion about GISTEMP vs. HadCRUt3: global temperatures.

There’s a host of different climate reanalyses around; among the most reputable ones, though, are those conducted by the American agencies NCEP (NOAA) and NCAR, the Japanese JMA, and the European ECMWF.


So, what is a climate reanalysis?

ECMWF explains:

“A climate reanalysis gives a numerical description of the recent climate, produced by combining models with observations. It contains estimates of atmospheric parameters such as air temperature, pressure and wind at different altitudes, and surface parameters such as rainfall, soil moisture content, and sea-surface temperature. (…)

ECMWF periodically uses its forecast models and data assimilation systems to ‘reanalyse’ archived observations, creating global data sets describing the recent history of the atmosphere, land surface, and oceans. Reanalysis data are used for monitoring climate change, for research and education, and for commercial applications.

Current research in reanalysis at ECMWF focuses on the development of consistent reanalyses of the coupled climate system, including atmosphere, land surface, ocean, sea ice, and the carbon cycle, extending back as far as a century or more. The work involves collection, preparation and assessment of climate observations, ranging from early in-situ surface observations made by meteorological observers to modern high-resolution satellite data sets. Special developments in data assimilation are needed to ensure the best possible temporal consistency of the reanalyses, which can be adversely affected by biases in models and observations, and by the ever-changing observing system.”

Continue reading

UAH v6 vs. CERES EBAF ToA

Happy New Year to everyone!

There is a very good reason why the trend and general progression of tropospheric temp anomalies since 2000, as rendered by the new UAH.v6 dataset, are most likely correct. (Read this post to understand why it was necessary for UAH to update their tlt product from its version 5.6 in the first place.)

The reason is that they both match to near perfection the trends and general progression of incoming and outgoing radiation flux anomalies, as rendered by the CERES EBAF ToA Ed2.8 dataset, over that same period. They’re all flat …:

ASR vs. OLR

Figure 1. Incoming radiant heat (ASR, “absorbed solar radiation”) (gold) vs. outgoing radiant heat (OLR, “outgoing longwave radiation”) (red) at the global ToA, from March 2000 to July 2015. Continue reading

Why “GISTEMP LOTI global mean” is wrong and “HadCRUt3 gl” is right

Two renditions of global surface (land+ocean) temperature anomaly evolution since 1970:

compress-2 (4)

Figure 1.

The upper red curve represents the final 46 years of the temperature record most frequently presented to (and therefore most often seen by) the general public: NASA’s official “GISTEMP LOTI global mean” product. There is hardly any “pause” in ‘global warming’ post 1997 to be spotted in this particular time series. It is the one predictably trotted out whenever an AGW ‘doom and gloom’ activist sees the need to ‘prove’ to a sceptic that “global warming” indeed continues unabatedly and rub his face in it.

The lower curve in Fig. 1 is an altogether unofficial one. However, it should still be fairly familiar to most. It is the one having been consistently used by me on this blog to represent actual global surface temperature anomalies since ~1970. It is time to explain (and to show) why …

This particular curve is simply the now defunct UEA/UKMO land+ocean product “HadCRUt3 gl” with an en bloc downward adjustment of 0.064 degrees included from January 1998*. The “Pause” is here vividly seen as but one (albeit an extended one) of several plateaus in an upward, distinctly steplike progression of global temps since the 70s.

* I discussed here why this is a necessary adjustment.

Now, which one of these two renditions is more honest in its attempt to depict the actual “reality” of things? And which one is the result of simply inventing extra warming?

Let’s have a look.

The following analysis uses data acquired from KNMI Climate Explorer and WfT.


I will draw your attention to a remarkable circumstance. Continue reading

“The Blob” and global SSTa since 2010

Global SSTa has really been ratcheting up now for a while. At the moment, the strong ongoing El Niño is doing most of the work, but there is no question that even this has been provided with a significantly elevated baseline from which to soar, a raised mean level seemingly establishing itself already years before the current El Niño started moving.

Well, it just so happens that this new level is higher than the old one by quite exactly 0.1 K. How can one tell?

Like this …

We noted and discussed already a year ago how the global lower troposphere has yet to respond to the conspicuous and mostly extratropical accumulation of surface heat in the NE Pacific basin starting in mid 2013.

Under the working hypothesis that this abnormal and persistent NE Pacific surface heat phenomenon (often simply nicknamed “The Blob”) is responsible for the entire 0.1K lift in the mean level of global SSTa since 2013, and positing that the lower troposphere has not yet responded to it, hence giving rise to the distinct divergence seen over the last couple of years between the “gl SSTa” and “tlt” curves, we lower the former en bloc by 0.1K from July 2013 onwards (yellow vertical line in Fig.1) and superimpose it on the latter: Continue reading

How AGW isn’t happening in the real Earth system …

Specifically how is the AGW mechanism for global surface warming supposed to work? How is the global “ocean heat content (OHC)” supposed to be increasing under a strengthening “radiative greenhouse effect (rGHE)”?

By reducing the surface’s ability to cool via thermal radiation (IR).

Here’s the basic idea:

Assuming the mean solar input [Qin] stays the same and assuming changes in evaporative-convective losses [Qout ev] only ever come in the form of responses to preceding “greenhouse”-induced warming, that is, these losses stay constant until such warming occurs, then the only mechanism for warming (of surface and/or ocean bulk) is a reduction in surface radiative losses [Qout rad], i.e. in the ‘radiant heat loss’ or – same thing – the ‘net LWIR flux’ coming off the surface:

Balance: ΔQin = ΔQout ev + ΔQout rad → 0 = 0 + 0

Imbalance: ΔQin = ΔQout ev + ΔQout rad → 0 = 0 + (-1) = -1

When less heat goes out than what comes in, warming ensues. It’s that simple …


This is the theory.

Now, do we see this AGW warming mechanism at work in the Earth system today? Can we observe it empirically? Can we follow in the available data the ongoing strengthening of the rGHE resulting from our continued fossil fuel emissions?

Not really.

In fact, we observe the exact opposite of what the theory above says should happen! Continue reading

Why atmospheric MASS, not radiation? Part 2

Be sure to read Part 1 first, now …



DEFINING THE rGHE THROUGH THE ERL.

How is the rGHE defined in the most basic way? If you have a planet with a massive atmosphere, the strength of its “greenhouse effect” is defined as the difference between its apparent planetary temperature in space and the physical mean global temperature of its actual, solid surface. The planet’s apparent temperature in space is derived simply from its average radiant flux to space, not from any real measured temperature. It is assumed that the planet is in relative radiative equilibrium with its sun, so is – over a certain cycle – radiating out the same total amount of energy as it absorbs.

If we apply this definition to Venus, we find that the strength of its rGHE is [737-232=] 505 K. Earth’s is [288-255=] 33 K.

The averaged planetary flux to space is conceptually seen as originating from a hypothetical blackbody “surface” or ‘radiating level’ somewhere inside the planetary system, tied specifically to a calculated emission temperature. This level can be viewed as the ‘average depth of upward radiation’ or the ‘apparent emitting surface’ of the planet as seen from space. Normally it is termed the ERL (‘effective radiating level’) or EEH (‘effective emission height’).

The idea behind the ERL is pretty straightforward, but does it accord with reality? The apparent planetary temperature of Venus in space is 231-232K, based on its average radiant flux, 163 W/m2. Likewise, Earth’s apparent planetary temperature in space is 255K, from its mean flux of 239 W/m2. In both of these cases, the planetary output is assumed to match its input (from the Sun), so one ‘simple’ method one could use to derive the apparent temperature of a planet is by taking the TSI (“solar constant”) at the planet’s (or moon’s) particular distance from the Sun, and multiply it with 1 – α, its estimated global (Bond) albedo, a number that’s always <1, finally dividing by 4 to cover the whole spherical surface. Determining the average global albedo is clearly the main challenge when going by this method. The most common value provided for Venus is 0.75, for Earth 0.296.

But does the resulting value really say anything about the actual planetary temperature? If the planet absorbs a mean radiant flux (net SW) below its ToA, then how this flux affects the overall system temperature very much depends on the system’s total bulk heat capacity. If it is large, the flux will have little effect, if it’s small, the flux will have a bigger effect.

Continue reading