TESTING – AND REFUTING – THE CENTRAL PREDICTION OF THE ‘AGW HYPOTHESIS’

Preamble

A presentation such as this, going as straight to the point as this one does, will necessarily rely on a fairly extensive ‘back catalogue’ of supporting graphs, figures and clarifications, most of which were generated in response to the likely questions and objections that might arise along the way, in the course of the argument being set up. Seeing how addressing these at every turn and having to substantiate all choices made at each single step would bog down and/or sidetrack the presentation to such an extent that the overall message would ultimately become lost in the noise, they will however have to remain in the background for now, rather kept ready at hand for the next round, so to speak. My point is this: Let the argument, as it stands, be presented first, to its completion – and then bring on the critique.

INTRODUCTION – THE THEORY BEHIND

The ‘AGW (CO2) warming hypothesis’ (really just another name for ‘the general idea of an «enhanced greenhouse effect» causing global warming’) says that, as the total content of CO2 in the atmosphere rises over time, so will global temperatures – in short: «Temps should go up». The scientific method demands that any scientific hypothesis should be able to make predictions like this, statements or claims about the world that can be tested, thus allowing us to either strengthen or weaken our trust in the explanatory power of our hypothesis. However, if there is to be any point in performing such a test, the prediction being tested needs to be relevant, i.e. it should be more or less unique to our particular hypothesis. So is «Temps should go up» a relevant prediction? No. It’s a prediction, but it’s not a relevant one. Because it isn’t specific enough. It isn’t unique to the ‘CO2 warming hypothesis’. It cannot separate between one proposed cause and another. For example, ‘more solar heat being absorbed by the Earth system over time’ would be an alternative explanation of multidecadal global warming to the «enhanced-greenhouse-effect» proposition. Both would predict the world to get warmer. So how do you choose one over the other? You hone in on an observation that would be unique to your favoured explanation. And now you’ve got yourself a relevant prediction to be tested …!

We, after all, want to find the cause behind the observed effect (‘global warming’), not the effect itself – that has already been found. That’s merely our starting point.

Continue reading

How the CERES EBAF Ed4 data disconfirms “AGW” in 3 different ways …..


And also how – in the process – it shows the new RSSv4 TLT series to be wrong and the UAHv6 TLT series to be right.



For those of you who aren’t entirely up to date with the hypothetical idea of an “(anthropogenically) enhanced GHE” (the “AGW”) and its supposed mechanism for (CO2-driven) global warming, the general principle is fairly neatly summed up here:


Figure 1. From Held and Soden, 2000 (Fig.1, p.447).

I’ve modified this diagram below somewhat, so as to clarify even further the concept of “the raised ERL (Effective Radiating Level)” – referred to as Ze in the schematic above – and how it is meant to ‘drive’ warming within the Earth system; to simply bring the message of this fundamental premise of “AGW” thinking more clearly across. Continue reading

Why there is no reason for you to trust the official global temperature records



The officially published global temperature records all converge on a total temperature rise since the late 19th century of about 0.9 (0.8–1.0) degrees Celsius:


Figure 1.

But to what extent can we be confident that this is how the ‘global average surface temperature’ (GAST) anomaly actually evolved over this time frame?

The truth is: We can’t. At all.


This is fundamentally a matter of data coverage, but – just as importantly – it is also a matter of methodology. How do you make up for a paucity of data? How do you properly compile, weight and interpolate data into a reliable “global average” when that data – the actual observational information that you have collected and thus have at your disposal – provides nothing like a full global coverage? And how do you make this “global average” of yours consistent over time when your data coverage (both in total and in spatial distribution) vastly changes over that same time frame? What basic assumptions will you have to rely on? Because, make no mistake, an interpretive undertaking such as this will crucially have to rest on a foundation of some rather sweeping presuppositions. Continue reading

Verifying my near-global 1985-2017 OLR record


It appears I was right 😎

33y TLT→OLR connection confirmed!



Turns out the results from my last blog post were challenged even before I published them. In a paper from 2014, Allan et al., the alii notably including principal investigator of the CERES team, Dr. Norman Loeb, went about reconstructing the ToA net balance (including the ASR and OLR contributing fluxes) from 1985 onwards, just like I did; in fact, it’s all right there in the title itself: “Changes in global net radiative imbalance 1985–2012”. I missed this paper completely, even when specifically managing to catch and discuss (in the supplementing post, Addendum I) its follow-up (Allan, 2017). The results and conclusions of Allan et al., 2014, regarding the downward (SW) and upward (LW) radiative fluxes at the ToA and how they’ve evolved since 1985, appear to disagree to a significant extent with mine. I was only very recently made aware of the existence of this paper, by a commenter on Dr. Roy Spencer’s blog, “Nate”, when he was kind enough to notify me (albeit in an ever so slightly hostile manner):

“What is stupid and cowardly is how Kristian refuses to confront the reality that the experts disagree with him about what we actually OBSERVE.

“Kristian, you have tried to draw conclusions from 33 y of data that you’ve stitched together by making various choices about offsets between the sets.

“But as I showed you, and you ignored, Loeb and collaborators have made different choices to produce a continuous set. And do not draw your conclusions.

“Here is a paper. (…)”

Continue reading

THE DATA: Sun – not Man – is what caused, and causes, ‘global warming’


Conclusively confirmed:
There is no “AGW”. Only “SGW”.

The Sun (+ASR; not TSI. A-S-R!) did it.
The “GHE” (–OLR) didn’t.

Read on …



Continue reading

THE DATA: (…); Supplementary discussions


This post contains three addenda to the next post; additional/further explorations that I feel have more of a tangential than a fundamental bearing on the main argument laid out there, still, I would say, providing some definite extra depth, scope and context to it. The figure numbering here will simply carry over from the main post (ending with number 31.), and all figures referred to in the text or captions below (but not in direct quotes) numbered somewhere between 1. and 31. will be from that post, unless otherwise noted.

The three addenda are:

I – A net flux composite

II – What do the models say?

III – ASR and cloud albedo



Continue reading

An atmosphere’s IR activity won’t make it warmer, and so cannot be the cause of surface warming either.



A simple argument is put forth against the idea that the radiative properties of an atmosphere somehow serve as the CAUSE of elevated steady-state planetary surface temps. Continue reading

The “Heat” issue once again …

I want to applaud Joseph Postma and his latest blog post, spelling out his grievances against the “Greenhouse Apologists” and how they consistently manage to worm their way out of ever providing a definitive, coherent clarification of how the hypothetical “Radiative Greenhouse Effect” (RGHE, rGHE) is actually meant to work physically, brushing all sceptical objections to their vague – as it seems, deliberately equivocal – contentions aside by simply claiming that our differences are purely of a semantic nature. It doesn’t matter to them whether we describe one and the same process as “reducing cooling” or “increasing warming/heating”, because the end result – a higher temperature – will allegedly be the same either way, ignoring the simple fact that, in reality, these are two fully distinct (as in ‘opposite’) thermodynamic processes: 1) INSULATION, 2) HEATING. And so, conflating them, as if they were somehow basically the same process, causes confusion.

Unnecessary confusion. Scientifically pointless confusion.

Postma puts it very neatly and succinctly: Continue reading

The Congo vs. Sahara-Sahel once more

UPDATE, June 19, 2017: The new ‘CERES EBAF Ed4 Sfc’ dataset arrived in May. The updated version proves even more detrimental to the idea of an “enhanced GHE” than the older one. The average sfc radiant heat loss (net LW, OLR) in the Congo is now reduced from 51 to 34 W/m2, while the same flux in the Sahara-Sahel has increased from 103 to 107 W/m2. At the same time, the solar heat inputs (net SW, ASR) in both regions are now more or less equal: 173.6 W/m2. Which means that the tropospheric column above the Congo surface appears to restrict its radiant heat loss to less than a third (rather than ‘just’ half) of its equivalent flux in the Sahara-Sahel region. So with the same heat INPUT from the Sun, but with a radiant heat loss more than three times larger (!) per unit time than in the Congo, the Sahara-Sahel surface is STILL several degrees WARMER on average than in the Congo!


OK, so commenter “Norman” asked me at Roy Spencer’s blog to clarify my position on whether a “more IR active atmosphere” would necessarily produce a higher average annual surface temperature at the bottom of that atmosphere. His inquiry in full:

Kristian

Then you would also agree that increasing GHG in the atmopshere (the quantity makes a difference since it decreases the heat out) will lead to the end result of a warmer surface?

Good. That is what the basic point is all about.

Does the amount of GHG in the atmosphere change the equilibrium temperature of the Earth’s surface?

In your other writings you have states some GHG is necessary but the quantity does not matter. what is your current understanding?

More GHG warmer surface?
Less GHG cooler surface?
Or No change once a certain amount is present?
If in both cases the solar flux to surface remains the same.

So what do we mean by a “more IR active atmosphere”? Well, a proponent of the AGW idea (that of the anthropogenically “enhanced GHE”), like Norman here, would simply say: more “GHGs”. But what does this actually entail? It would lead to an atmospheric column that is more opaque (that is, less transparent) to outgoing surface IR. The idea is that the so-called “GHGs”, the IR active gases (and clouds, mind you), would absorb it more strongly, sort of “capture it” on its way out, and reradiate it in ALL directions, not just the upward one, thus diminishing the net flux of IR moving away from the surface and in the direction of space. And what is this net flux of outgoing IR from the surface? It’s the surface radiant HEAT loss, its Qout(LW).

So Norman’s central claim is this one: “(…) increasing GHG in the atmopshere (the quantity makes a difference since it decreases the heat out) will lead to the end result of a warmer surface (…)”

Well, will it? What does empirically based data from the real Earth system have to say about it?

We return to Africa. Continue reading

The ship-buoy bias correction excuse (HadSST3 and ERSSTv4)

In 2011, the Hadley Centre of the UK Met Office replaced their global sea surface temperature series, HadSST2, with a new one, HadSST3, an upgrade allegedly necessitated by, among other things, the particular ‘discovery’ that the recorded temperature evolution of the global ocean surface had, since about 1979, for one particular reason followed a path that trended artificially low. The official global sea surface temperature data as compiled simply showed too little overall warming. Since 1978-79, that is, during the satellite era.

This is funny, because the Hadley Centre’s own official global SST dataset, HadSST2, already showed an overall warming since the late 70s that was much larger than the other official datasets out there, like ERSST, Reynolds OI and HadISST:


Animation 1.

Note that the new ERSSTv4 series is also included in Anim.1 (red curve), and that it distinctly supports the group of ‘others’: The light blue HadSST2 curve all of a sudden makes a giant upward leap of nearly 0.1K at the 1997-1998 transition (light green vertical line). There is hardly any divergence to be observed between it and the others, however, either before or after this point (save that from ERSSTv4 post 2005; more on that later …). Continue reading