What caused the current ToA radiative imbalance?

First the SW (that’s measured reflected SW at the top of the atmosphere (ToA), basically an expression of Earth’s albedo). TSI (incoming sunlight) at the ToA minus reflected SW (albedo) at the ToA equals the ASR (“absorbed solar radiation”) at the ToA, the actual radiant HEAT (net SW) transferred from the Sun to the Earth system as a whole:

(ERBS Ed3 + CERES EBAF Ed2.8 vs. ISCCP FD; tropics, 1985-2004 (20 years).)
Continue reading

Why “GISTEMP LOTI global mean” is wrong and “UAHv6 tlt gl” is right

Ten days ago, Nick Stokes wrote a post on his “moyhu” blog where he – in his regular, guileful manner – tries his best to distract from the pretty obvious fact (pointed out in this recent post of mine) that GISS poleward of ~55 degrees of latitude, most notably in the Arctic, basically use land data only, effectively rendering their “GISTEMP LOTI global mean” product a bogus record of actual global surface temps.

Among other things, he says:

“The SST products OI V2 and ERSST, used by GISS then and now, adopted the somewhat annoying custom of entering the SST under sea ice as -1.8°C. They did this right up to the North Pole. But the N Pole does not have a climate at a steady -1.8°C. GISS treats this -1.8 as NA data and uses alternative, land-based measure. It’s true that the extrapolation required can be over long distances. But there is a basis for it – using -1.8 for climate has none, and is clearly wrong.

So is GISS “deleting data”? Of course not. No-one actually measured -1.8°C there. It is the standard freezing point of sea water. I guess that is data in a way, but it isn’t SST data measured for the Arctic Sea.”

The -1.8°C averaging bit is actually a fair and interesting point in itself, but this is what Stokes does; he finds a peripheral detail somehow related to the actual argument being made and proceeds to misrepresent its significance in an attempt to divert people’s attention from the real issue at hand. The real issue in this case of course being GISS’s (bad) habit of smearing anomaly values from a small collection of land data points all across the vast polar cap regions, over wide tracts of land (where for the main part we don’t have any data), over expansive stretches of ocean (where we do have SST data readily available) AND over complex regions affected by sea ice (where we indeed do have data (SSTs, once again) when and where there isn’t any sea ice cover, but none whatsoever when there is), all the way down to 55-60 degrees of latitude. Continue reading


Happy New Year to everyone!

There is a very good reason why the trend and general progression of tropospheric temp anomalies since 2000, as rendered by the new UAH.v6 dataset, are most likely correct. (Read this post to understand why it was necessary for UAH to update their tlt product from its version 5.6 in the first place.)

The reason is that they both match to near perfection the trends and general progression of incoming and outgoing radiation flux anomalies, as rendered by the CERES EBAF ToA Ed2.8 dataset, over that same period. They’re all flat …:


Figure 1. Incoming radiant heat (ASR, “absorbed solar radiation”) (gold) vs. outgoing radiant heat (OLR, “outgoing longwave radiation”) (red) at the global ToA, from March 2000 to July 2015. Continue reading

How AGW isn’t happening in the real Earth system …

Specifically how is the AGW mechanism for global surface warming supposed to work? How is the global “ocean heat content (OHC)” supposed to be increasing under a strengthening “radiative greenhouse effect (rGHE)”?

By reducing the surface’s ability to cool via thermal radiation (IR).

Here’s the basic idea:

Assuming the mean solar input [Qin] stays the same and assuming changes in evaporative-convective losses [Qout ev] only ever come in the form of responses to preceding “greenhouse”-induced warming, that is, these losses stay constant until such warming occurs, then the only mechanism for warming (of surface and/or ocean bulk) is a reduction in surface radiative losses [Qout rad], i.e. in the ‘radiant heat loss’ or – same thing – the ‘net LWIR flux’ coming off the surface:

Balance: ΔQin = ΔQout ev + ΔQout rad → 0 = 0 + 0

Imbalance: ΔQin = ΔQout ev + ΔQout rad → 0 = 0 + (-1) = -1

When less heat goes out than what comes in, warming ensues. It’s that simple …

This is the theory.

Now, do we see this AGW warming mechanism at work in the Earth system today? Can we observe it empirically? Can we follow in the available data the ongoing strengthening of the rGHE resulting from our continued fossil fuel emissions?

Not really.

In fact, we observe the exact opposite of what the theory above says should happen! Continue reading

The “enhanced” greenhouse effect that wasn’t

Update (March 24th) at the end of this post – a kind of a response from Feldman.

There was much ado recently about a new paper published in ‘Nature’ (“Observational determination of surface radiative forcing by CO2 from 2000 to 2010″ by Feldman et al.) claiming to have observed a strengthening in CO2-specific “surface radiative forcing” at two sites in North America going from 2000 to the end of 2010 (a period of 11 years) of about 0.2 W/m2 per decade, and through this observation further claiming how they have shown empirically (allegedly for the first time outside the laboratory) how the rise in atmospheric CO2 concentration directly and positively affects the surface energy balance, by adding more and more energy to it as “back radiation” (“downwelling longwave (infrared) radiation” (DWLWIR)), thus – by implication – leading to surface warming.

In other words, Feldman et al. claim to have obtained direct empirical evidence – from the field – of a strengthening of the “greenhouse effect”, a result, it would seem, lending considerable support to the hypothesis that our industrial emissions of CO2 and other similar gaseous substances to the atmosphere has enhanced, and is indeed enhancing still, the Earth’s atmospheric rGHE, thus causing a warming global surface – the AGW proposition.

From the abstract:

(…) we present observationally based evidence of clear-sky CO2 surface radiative forcing that is directly attributable to the increase, between 2000 and 2010, of 22 parts per million atmospheric CO2.”


“These results confirm theoretical predictions of the atmospheric greenhouse effect due to anthropogenic emissions, and provide empirical evidence of how rising CO2 levels (…) are affecting the surface energy balance.”

So the question is: Do these results really “confirm theoretical predictions of the atmospheric greenhouse effect due to anthropogenic emissions”?

Of course they don’t. As usual, the warmists refuse to look at the whole picture, insisting rather on staying inside the tightly confined space of their own little bubble model world. Continue reading

The greenhouse effect that wasn’t (Part 1)

This turned out to be a longer post (the first of two) than what I had originally planned. The actual presentation and analysis of data starts only about halfway through. If you don’t much care for my ranting about how ‘the climate establishment’ deliberately employ specious arguments and methods to try and make us believe and perceive that clouds somehow massively warm the Earth even when they’re not, then please feel free to scroll past the first three or four sections.


Yes, we have all experienced how clouds covering the sky on a sunny day will tend to cool things down. Heck, shade or sunshine, which is hotter? Likewise, I think most of us can attest to the experience of how a cloudy night will be milder than a clear one.

These two different ‘cloud effects’ work in opposite directions. During the day, the heat comes in from the Sun: Qin. If you then pull a blanket or something similar between you and the heat source, you will (hopefully) avoid being overheated. People living in deserts know all about this principle. They wear their long, loose, bright garments not to stay warm, but in order to stay cool. Note, there is also heat going out (from the surface) during the day (Qout) – a direct consequence of the original solar heat input. But in most cases, this is totally overwhelmed by the incoming solar heat, so much so that it’s normally forgotten about, unless you happen to step onto a hot pavement or sand. Since the outgoing heat is also very much dependent on the original solar heating, reducing Qin during the day would also necessarily reduce Qout.

During the night, there is no more heat coming in from the Sun. There is only the heat going out, at this point from excess solar energy having accumulated during the day. So the surface is no longer being heated. Its temperature is dropping. It loses energy (as heat). Cooling. It cools directly to space, but also substantially to the air/atmosphere above it, which then in turn cools to space from higher up on its behalf, so to say. What happens if we now pull a blanket over the scene? Well, the remaining heat source, the ground, is now obstructed from direct access to its ultimate cold reservoir, space. The heat being expelled is to a much lesser degree able to go straight to the outer, icy cold heat sink, it goes rather to the more warmish layer in between. Reducing the overall gradient, thus reducing the cooling rate. People living in cold places know all about this principle. They wear thick, heavy, fluffy clothes in multiple layers, not to stay cool, but to stay warm.

The wonders of insulation! It works both ways. You only need to figure out where the principal heat is coming from.

OK, so this should be our starting point: Clouds exert both an indirect ‘cooling’ and an indirect ‘warming’ influence on surface temperatures. They take away from the solar input during the day (>Qin), and they reduce the ground’s cooling rate during the night (>Qout).

So which of these contrary ‘cloud effects’ is stronger?

Well, the heading above should give you an inkling of sorts. But I fear we will have to wind our way forward a bit before reaching final enlightenment.

First we need to revisit an old friend. Yes, that old friend … Continue reading