‘To heat a planetary surface’ for dummies; Part 5a

In 1938, English steam technologist Guy Stewart Callendar wrote what proved to be a seminal – one might even venture to call it the foundational – paper of the entire modern AGW pipe dream movement, with its rather determined effort at postulating what we today call the “Radiative (Atmospheric) Greenhouse Effect” (rGHE), or as some people would prefer it: the “Callendar Effect”.

In his paper – “The Artificial Production of Carbon Dioxide and Its Influence on Temperature” – Callendar argued that the increase in global atmospheric CO2  concentration due to our industrial endeavours would (and did) warm the world because of the alleged augmenting influence of this IR-active molecule on the so-called “sky radiation” (what we today call “(atmospheric) downwelling longwave radiation” (DLR, DWLWIR), more commonly known simply as “back radiation”):

“Few of those familiar with the natural heat exchanges of the atmosphere, which go into the making of our climates and weather, would be prepared to admit that the activities of man could have any influence upon phenomena of so vast a scale.

In the following paper I hope to show that such influence is not only possible, but is actually occurring at the present time.”

Notice here how Callendar was well aware that with his hypothesis, he was challenging a generally accepted scientific paradigm of his time, one which held that our climate and weather are natural phenomena with purely natural drivers, which can not in any meaningful way be influenced (globally, at least) by human activity.

Callendar claimed that it can. And that it does. He even went so far as to claim he could show it …

Well, then; by all means bring it on! To quote Carl Sagan:

“Extraordinary claims require extraordinary evidence.”

Continue reading

‘To heat a planetary surface’ for dummies; Part 4

I rounded off Part 3 of this series by suggesting the following:

Next up: How do you heat a planetary surface, then? If not by the Earth’s own thermal radiation, a result of its temperature rather than a cause of it … How does the atmosphere insulate the surface?”

Not so. This will have to wait a bit still. Next post, perhaps. I will rather try to clarify my stance on the whole ‘bidirectional flow’ concept thing, seeing how this topic has a tendency of stirring up both emotions and misconceptions.



There is quite a bit of confusion surrounding the whole issue of electromagnetic radiation, the Stefan-Boltzmann Law and the thermodynamic concept of ‘energy transfer’.

I will try to explain why there can be no such thing as a bidirectional energy transfer between two objects radiating at each other. Yes, they are radiating at each other! Radiation goes in all directions. Continue reading

‘To heat a planetary surface’ for dummies; Part 1

Happy New Year to everyone! Hope you all had a pleasant celebration.

I will unabashedly start off in 2015 with … another attempt at exposing the chasm that lies between what real physics tells us about the processes of nature (plus what we actually observe in the real world) on the one hand, and what the ‘physics’-like concoctions of the radiative GHE/AGW-establishment proclaim on the other.



The general public understanding (or should we rather call it ‘perception’?) of how the presence of an atmosphere would make the solar-heated planetary surface underneath warmer than if the atmosphere weren’t there, is so riddled with misconceptions and flawed ideas about how the world works, on such a fundamental level, that something needs to be done.

People simply need to understand that the official (and, I’m afraid, ‘authoritative’) rGHE/AGW ‘explanation’ is based altogether on self-invented nonsense physics.

The best way to let people realise this is to explain how things really work and to have this juxtaposed with the standard rGHE postulates advertised by ‘Climate ScienceTM’. Continue reading