‘Modern Global Warming’ in three steps – the (fairly) short version

In IPCC’s Fifth Assessment Report (AR5) of last year, they stated the following:

“It is extremely likely [95 percent confidence] more than half of the observed increase in global average surface temperature from 1951 to 2010 was caused by the anthropogenic increase in greenhouse gas concentrations and other anthropogenic forcings together.”

‘More than half.’ That sounds like a pretty conservative guess. Well, they end up going further than that. Much further.

What caused global warming over the last 60 years or so, according to the IPCC? Apparently, human ‘greenhouse gas’ emissions alone (100%):

“The best estimate of the human-induced contribution to warming is similar to the observed warming over this period … The observed warming since 1951 can be attributed to the different natural and anthropogenic drivers and their contributions can now be quantified. Greenhouse gases contributed a global mean surface warming likely to be in the range of 0.5°C to 1.3 °C over the period 1951−2010, with the contributions from other anthropogenic forcings, including the cooling effect of aerosols, likely to be in the range of −0.6°C to 0.1°C.”

That should be a net range of anthropogenic ‘contributions’ to the general global temperature rise between 1951 and 2010 of 0.6 to 0.7°C.

So, then, what did not contribute at all (0%) to that same general warming, according to the IPCC? Apparently, natural external factors like solar activity, and natural internal factors like ocean cycles:

“The contribution from natural forcings is likely to be in the range of −0.1°C to 0.1°C, and from internal variability is likely to be in the range of −0.1°C to 0.1°C.”

That should make up a total natural contribution to the general global temperature rise between 1951 and 2010 of exactly 0°C. Continue reading

Advertisements

How the world really warmed …, Part III: Steps 2 & 3

”The main tool used in this study is correlation and regression analysis that, through least squares fitting, tends to emphasize the larger events. This seems appropriate as it is in those events that the signal is clearly larger than the noise. Moreover, the method properly weights each event (unlike many composite analyses). Although it is possible to use regression to eliminate the linear portion of the global mean temperature signal associated with ENSO, the processes that contribute regionally to the global mean differ considerably, and the linear approach likely leaves an ENSO residual. We have shown here that 0.06 °C of the warming from 1950 to 1998 can be accounted for by the increased El Niño phase of ENSO. The lag of global mean temperatures behind N3.4 is 3 months, somewhat less than found in previous studies. In part, this probably relates mostly to the key ENSO index used, as the evolution of ENSO means that greater or lesser lags arise for alternative indices that also vary across the 1976/1977 climate shift.”

From Trenberth et al. 2002: “Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures.”

I want you to bear this quote in mind – especially the highlighted part – throughout this post. Because what we will do in the following, is to address and track Trenberth’s ‘ENSO residual’, the result of ENSO-related oceanic/atmospheric processes operating and contributing regionally to global mean temps outside the ‘key ENSO index’ region in the equatorial East Pacific (the NINO3.4), and that evidently (according to the data) differ considerably in their effects (contributions) from some ENSO events to others. This extra-NINO part of the ENSO process is what caused ‘global warming’ since 1980. That’s not a claim. It’s an observation. It’s right there in the freely accessible real-world data. For all to see.

If one simply cares to have a look … And knows what to look for. Continue reading

How the world really warmed …, Part II: ‘Step 1’

We have identified three steps in mean global temperatures since 1970: one in 1979, one in 1988 and one in 1998. These three steps alone conspicuously and remarkably contain the entire modern era ‘global warming’ observed to occur between the late 70s and the early 00s, a period of about 20-25 years, depending on how you look at it. This means that outside these three distinct and sudden upward jolts, there has been no discernable ‘global warming’ going on at all for the duration of at least the last 50 years.

So how, then, did these three prominent steps in global temperatures come about?

It has long been known that the climate regime (the general state, arrangement and operative processes of the coupled ocean/atmosphere condition) of the Pan-Pacific basin changed fundamentally and abruptly in 1976/77. Many studies have documented this. Something big happened in the Pacific Ocean that year. This ‘thing’ has been dubbed ‘The Great Pacific Climate Shift’ (GPCS). Continue reading